Sign in →

Epic Test Code LAB831 Mercury, Blood

Additional Codes

MML Code: HG

LIS Code: HGS

NY State Approved

Yes

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Reporting Name

Mercury, B

Method Name

Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry (ICP-MS/MS)

Specimen Stability Information

Specimen Type Temperature Time Special Container
Whole blood Refrigerated (preferred) 28 days
  Ambient  28 days
  Frozen  28 days


Specimen Required


Patient Preparation: High concentrations of gadolinium and iodine are known to potentially interfere with most inductively coupled plasma mass spectrometry-based metal tests. If either gadolinium- or iodine-containing contrast media has been administered, a specimen should not be collected for 96 hours.

Supplies: Metal Free B-D Tube (EDTA), 6 mL (T183)

Container/Tube: Royal blue top (EDTA) plastic trace element blood collection tube

Specimen Volume: Full tube

Collection Instructions:

1. See Metals Analysis Specimen Collection and Transport for complete instructions.

2. Send whole blood specimen in original tube. Do not aliquot.


Specimen Type

Whole blood

Specimen Minimum Volume

0.3 mL

Reference Values

<10 ng/mL

Reference values apply to all ages.

Report Available

1 to 2 days

Day(s) Performed

Monday through Saturday

CPT Code Information

83825

Reject Due To

Gross hemolysis OK
Gross lipemia OK
Gross icterus OK

Useful For

Detecting mercury toxicity

Clinical Information

Mercury (Hg) is relatively non-toxic in its elemental form. If Hg(0) is chemically modified to the ionized, inorganic species, Hg(2+), it becomes toxic. Further bioconversion to an alkyl Hg, such as methyl Hg (CH3Hg[+]), yields a species of mercury that is highly selective for lipid-rich tissue, such as neurons, and is very toxic. The relative order of toxicity is:

 

Least Toxic - Hg(0) < Hg(2+) << CH3Hg(+) -- Very Toxic

 

Mercury can be chemically converted from the elemental state to the ionized state. In industry, this is frequently done by exposing Hg(0) to strong oxidizing agents, such as chlorine.

 

Hg(0) can be bioconverted to both Hg(2+) and alkyl Hg by microorganisms that exist both in the normal human gut and in the bottom sediment of lakes, rivers, and oceans. When Hg(0) enters bottom sediment, it is absorbed by bacteria, fungi, and small microorganisms; they metabolically convert it to Hg(2+), CH3Hg(+), and C2H6Hg. Should these microorganisms be consumed by larger marine animals and fish, the mercury passes up the food chain in rather toxic form.

 

Mercury expresses its toxicity in 3 ways:

-Hg(2+) is readily absorbed and reacts with sulfhydryl groups of protein, causing a change in the tertiary structure of the protein-a stereoisomeric change-with subsequent loss of the unique activity associated with that protein. Because Hg(2+) becomes concentrated in the kidney during the regular clearance processes, this target organ experiences the greatest toxicity.

-With the tertiary change noted previously, some proteins become immunogenic, eliciting a proliferation of T lymphocytes that generate immunoglobulins to bind the new antigen; collagen tissues are particularly sensitive to this.

-Alkyl Hg species, such as CH3Hg(+), are lipophilic and avidly bind to lipid-rich tissues such as neurons. Myelin is particularly susceptible to disruption by this mechanism.

 

Members of the public will occasionally become concerned about exposure to mercury from dental amalgams. Restorative dentistry has used a mercury-silver amalgam for approximately 90 years as a filling material. A small amount of mercury (2-20 mcg/day) is released from a dental amalgam when it was mechanically manipulated, such as by chewing. The habit of gum chewing can cause release of mercury from dental amalgams greatly above normal. The normal bacterial microbiota present in the mouth converts a fraction of this to Hg(2+) and CH3Hg(+), which was shown to be incorporated into body tissues. The World Health Organization safety standard for daily exposure to mercury is 45 mcg/day. Thus, if one had no other source of exposure, the amount of mercury released from dental amalgams is not significant.(1) Many foods contain mercury. For example, commercial fish considered safe for consumption contain less than 0.3 mcg/g of mercury, but some game fish contain more than 2.0 mcg/g and, if consumed on a regular basis, contribute to significant body burdens.

 

Therapy is usually monitored by following urine output; therapy may be terminated after urine excretion is below 50 mcg/day.

Interpretation

The quantity of mercury (Hg) found in blood and urine correlates with degree of toxicity. Hair analysis can be used to document the time of peak exposure if the event was in the past.

 

Normal whole blood mercury is usually below 10 ng/mL.

 

Individuals who have mild exposure during work, such as dentists, may routinely have whole blood mercury levels up to 15 ng/mL.

 

Significant exposure is indicated when the whole blood mercury is above 50 ng/mL if exposure is due to alkyl Hg, or above 200 ng/mL if exposure is due to Hg(2+).

Cautions

No significant cautionary statements

Specimen Retention Time

14 days